BROMINATION-A VERSATILE TOOL FOR DRUGS OPTIMIZATION

  • Alexandra JITAREANU “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • Gabriela TATARINGA “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • Ana-Maria ZBANCIOC “Grigore T. Popa” University of Medicine and Pharmacy Iasi
  • Adriana TRIFAN “Grigore T. Popa” University of Medicine and Pharmacy Iasi

Abstract

BROMINATION-A VERSATILE TOOL FOR DRUGS OPTIMIZATION (Abstract): Scientific literature presents many naturally occurring brominated substances exhibiting different biological activities. Most natural brominated derivatives have been isolated from the marine biosphere, being metabolites of algae, sponges and corals. These molecules became structural models for obtaining synthetic derivatives with superior bioactive potential. The present paper is an analysis of previously published studies on the influence of insertion of bromine atoms in different molecules on their bioactivity. In general, the results confirmed the positive effect of bromination on the bioactive potential of substances. The mechanisms explaining these results are still insufficiently elucidated, several possibilities being mentioned: increased lipophilicity and permeability through biological membranes, increased half-life or the possibility of intermolecular bond formation (attractive interactions) between the electrophilic region of the molecule containing bromine atoms and various nucleophilic active sites of biomolecules. In conclusion, bromination may be a way to increase the potency of therapeutic agents and research in the field of molecular design of brominated compounds will certainly continue.

Author Biographies

Alexandra JITAREANU, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

 Faculty of Pharmacy
Department of Pharmaceutical Sciences (I)

Gabriela TATARINGA, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

 Faculty of Pharmacy
Department of Pharmaceutical Sciences (I)

Ana-Maria ZBANCIOC, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

Faculty of Pharmacy
Department of Pharmaceutical Sciences (I)

Adriana TRIFAN, “Grigore T. Popa” University of Medicine and Pharmacy Iasi

Faculty of Pharmacy
Department of Pharmaceutical Sciences (II)

References

1. Murphy CD. New frontiers in biological halogenation. J Appl Microbiol 2003; 94(4): 539-548.
2. Gribble GW. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar Drugs 2015; 13(7): 4044-4136.
3. Herrera-Rodriguez LN, Khan F, Robins KT, Meyer H-P. Perspectives on biotechnological halogena-tion. Part I: Halogenated products and enzymatic halogenation. Chim Oggi 2011; 29: 31-33.
4. Pérez MJ, Falqué E, Domínguez H. Antimicrobial Action of Compounds from Marine Seaweed. Mar Drugs 2016; 14(3): 52-90.
5. Cabrita MT, Vale C, Rauter AP. Halogenated Compounds from Marine Algae. Mar Drugs 2010; 8(8): 2301-2317.
6. Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2009-2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Mar Drugs 2013; 11(7): 2510-2573.
7. Eguchi K, Kato H, Fujiwara Y, et al. Bastadins, brominated-tyrosine derivatives, suppress accumulation of cholesterol ester in macrophages. Bioorg Med Chem Lett 2015; 25(22): 5389-5392.
8. Asolkar RN, Singh A, Jensen PR, et al. Marinocyanins, cytotoxic bromo-phenazinone meroterpenoids from a marine bacterium from the streptomycete clade MAR4. Tetrahedron 2017; 73(16): 2234-2241.
9. Rahman H, Austin B, Mitchell WJ, et al. Novel Anti-Infective Compounds from Marine Bacteria. Mar Drugs 2010; 8(3): 498-518.
10. Akiyama T, Takada K, Oikawa T, et al. Stimulators of adipogenesis from the marine sponge Xes-tospongia testudinaria. Tetrahedron 2013; 69(32): 6560-6564.
11. Liang LF, Wang T, Cai YS et al. Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors. Eur J Med Chem 2014; 79: 290-297.
12. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Agents that inhibit bacterial biofilm formation. Future Med Chem 2015; 7(5): 647-671.
13. Gerebtzoff G, Li-Blatter X, Fischer H, Frentzel A, Seelig A. Halogenation of drugs enhances mem-brane binding and permeation. Chem Bio Chem 2004; 5: 676-684.
14. Gentry CL, Egleton RD, Gillespie T, et al. The effect of halogenation on blood-brain barrier permea-bility of a novel peptide drug. Peptides 1999; 20(10): 1229-1238.
15. Xu Z, Yang Z, Liu Y, Lu Y, Chen K, Zhu W. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. J Chem Inf Model 2014; 54(1): 69-78.
16. Mendez L, Henriquez G, Sirimulla S, Narayan M. Looking Back, Looking Forward at Halogen Bond-ing in Drug Discovery. Molecules 2017; 22(9): 1397-1412.
17. Steenackers HP, Levin J, Janssens JC, et al. Structure-activity relationship of brominated 3-alkyl-5-methylene-2(5H)-furanones and alkylmaleic anhydrides as inhibitors of Salmonella biofilm formation and quorum sensing regulated bioluminescence in Vibrio harveyi. Bioorg Med Chem 2010; 18(14): 5224-5233.
18. Park JS, Ryu EJ, Li L, Choi BK, Kim BM. New bicyclic brominated furanones as potent autoinducer-2 quorum-sensing inhibitors against bacterial biofilm formation. Eur J Med Chem 2017; 137: 76-87.
19. Biswas NN, Kutty SK, Iskander GM, et al. Synthesis of brominated novel N-heterocycles: new scaf-folds for antimicrobial discovery. Tetrahedron 2016; 72(4): 539-546.
20. Bouthenet E, Oh KB, Park S, Nagi NK, Lee HS, Matthews SE. Synthesis and antimicrobial activity of brominated resorcinol dimers. Bioorg Med Chem Lett 2011; 21(23): 7142-7145.
21. Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005; 26(5): 343-356.
22. Schillaci D, Petruso S, Sciortino V. 3,4,5,3’,5’-Pentabromo-2-(2’-hydroxybenzoyl)-pyrrole: a potential lead compound as anti-Gram-positive and anti-biofilm agent. Int J Antimicrob Agents 2005; 25: 338-340.
23. Rane RA, Gutte SD, Sahu NU. Synthesis and evaluation of novel 1,3,4-oxadiazole derivatives of marine bromopyrrole alkaloids as antimicrobial agent. Bioorg Med Chem Lett 2012; 22(20): 6429-6432.
24. Scholz T, Heyl CL, Bernardi D, Zimmermann S, Kattner L, Klein CD. Chemical, biochemical and microbiological properties of a brominated nitrovinylfuran with broad-spectrum antibacterial activity. Bioorg Med Chem 2013; 21(3): 795-804.
25. Ranjith PK, Rajeesh P, Haridas KR et al. Design and synthesis of positional isomers of 5 and 6-bromo-1-((phenyl)sulfonyl)-2-((4-nitrophenoxy)methyl)-1Hbenzimidazoles as possible antimicrobial and antitubercular agents. Bioorg Med Chem Lett 2013; 23(18): 5228-5234.
26. Pejović A, Damljanović I, Stevanović D, et al. Antimicrobial ferrocene containing quinolinones: Synthesis, spectral, electrochemical and structural characterization of 2-ferrocenyl-2,3-dihydroquinolin-4(1H)-one and its 6-chloro and 6-bromo derivatives. Polyhedron 2012; 31 (1): 789-795.
27. Stoykova B, Chochkova M, Ivanova G, et al. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides - Structural characterization and antimicrobial evaluation. J Mol Struct 2017; 1135: 144-152.
28. Narasimhan B, Belsare D, Pharande D, Mourya V, Dhake A. Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 2004; 39: 827-834.
29. Jităreanu A, Tătărîngă G, Zbancioc AM, Tuchiluş C, Stănescu U. Antimicrobial activity of some cinnamic acid derivatives. Rev Med Chir Soc Med Nat Iasi 2011; 115(3): 965-971.
30. Staneva D, Vasileva-Tonkova E, Makki MSI, et al. Synthesis and spectral characterization of a new PPA dendrimer modified with 4-bromo-1,8-naphthalimide and in vitro antimicrobial activity of its Cu(II) and Zn(II) metal complexes. Tetrahedron 2015; 71(7): 1080-1087.
31. Paraskevopoulos G, Monteiro S, Vosátka R, et al. Novel salicylanilides from 4,5-dihalogenated salicylic acids: Synthesis, antimicrobial activity and cytotoxicity. Bioorg Med Chem 2017; 25(4): 1524-1532.
32. Tang X, Xie M, Sun YX, Liu JH, Zhong ZC, Wang YL. Synthesis and antibacterial activity of bro-minated 2’(4’)-nitro-3-hydroxy diphenyl ethers. Chin Chem Lett 2009; 20: 435-438.
33. Lind KF, Hansen E, Østerud B, et al. Antioxidant and Anti-Inflammatory Activities of Barettin. Mar Drugs 2013; 11(7): 2655-2666.
34. Justino GC, Rodrigues M, Florêncio MH, Mira L. Structure and antioxidant activity of brominated flavonols and flavanones. J Mass Spectrom 2009; 44(10): 1459-1468.
35. Anouar el H, Raweh S, Bayach I, et al. Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. J Comput Aided Mol Des 2013; 27(11): 951-964.
36. Saravanan G, Alagarsamy V, Prakash CR. Synthesis and evaluation of antioxidant activities of novel quinazolinone derivatives. Int J Pharm Pharm Sci 2010; 2(4): 83-86
37. Alshanon AF, Firas H, Ayah AH, et al. Synthesis, Characterization, Antioxidant Activity and Anti-tumor of Some 2-Amino-5-(3-nitro-phenyl)-1,3,4- thiadiazole Derivatives. Int J Pharma Sci 2015; 5(1): 904-910.
38. Hameed AA, Hassan F. Synthesis, Characterization and Antioxidant Activity of Some 4-Amino-5-Phenyl-4H-1, 2, 4-Triazole-3-Thiol Derivatives. IJAST 2014; 4(2): 202-211.
39. Lahsasni SA, Al Korbi FH, Aljaber NA. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chem Cent J 2014; 8: 32-42.
40. Kumar A, Varadaraj BG, Singla RK. Synthesis and evaluation of antioxidant activity of novel 3,5-disubstituted-2-pyrazolines. Bull Fac Pharm Cairo Univ 2013; 51: 167-173.
41. Balaydin HT, Gülçin Í, Menzek A, Göksu S, Şahin E. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J Enzyme Inhib Med Chem 2010; 25(5): 685-695.
42. Peng L, Schorzman AN, Ma P, et al. 2′-(2-bromohexadecanoyl)-paclitaxel conjugate nanoparticles for the treatment of non-small cell lung cancer in an orthotopic xenograft mouse model. Int J Nanomedicine 2014; 9: 3601-3610.
43. Zhou J, Gupta K, Aggarwal S, et al. Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation. Mol Pharmacol 2003; 63(4): 799-807.
44. Ajeawung N, Joshi H, Kamnasaran D. Brominated Noscapine Inhibits the Growth of Pediatric Low Grade Astrocytomas. Eur J Cancer 2012; 48(6):104-105.
45. Mishra RC, Gundala SR, Karna P, et al. Design, Synthesis and Biological Evaluation of Di-substituted Noscapine Analogs as Potent and Microtubule-Targeted Anticancer Agents. Bioorg Med Chem Lett 2015; 25(10): 2133-2140.
46. Rida PC, LiVecche D, Ogden A, Zhou J, Aneja R. The Noscapine Chronicle: A Pharmaco-Historic Biography of the Opiate Alkaloid Family and its Clinical Applications. Med Res Rev 2015; 35(5): 1072-1096.
47. Cincinelli R, Musso L, Artali R, et al. Camptothecin-psammaplin A hybrids as topoisomerase I and HDAC dual-action inhibitors. Eur J Med Chem 2018; 143: 2005-2014.
48. Nikolova-Mladenova B, Bakalova A, Momekov G, Ivanov D. Design, drug-likeness and cytotoxicity of some bromo-salicylaldehyde aroylhydrazones. J of Medical & Biological Sciences 2015; 2(1): 16-20.
49. Zhang S, Li T, Zhang Y et al. A new brominated chalcone derivative suppresses the growth of gastric cancer cells in vitro and in vivo involving ROS mediated up-regulation of DR5 and 4 expression and apoptosis. Toxicol Appl Pharmacol 2016; 309: 77-86.
50. Mercado JCQ, Ocampo CQ, Oyong GG, Alea GV, Lagua FMG. Synthesis and Characterization of 5-Bromo-6-(4-Chlorophenyl)-2-Propyl-imidazo(2,1-b)(1,3,4) Thiadiazole A Potential Anti-Cancer Drug. Proceedings of the DLSU Research Congress 2015; 3.
51. Najda-Bernatowicz A, Łebska M, Orzeszko A, et al. Synthesis of new analogs of benzotriazole, benzimidazole and phthalimide-potential inhibitors of human protein kinase CK2. Bioorg Med Chem 2009; 17(4): 1573-1578.
52. Cañete-Molina A, Espinosa-Bustos C, González-Castro M, et al. Design, synthesis, cytotoxicity and 3D-QSAR analysis of new 3,6-disubstituted-1,2,4,5-tetrazine derivatives as potential antitumor agents. Arab J Chem 2017, doi.org/10.1016/j.arabjc.2017.04.002
53. Ibacache JA, Valderrama JA, Arancibia V, Theoduloz C, Muccioli GG, Benites J. Antiproliferative activity of new 6-bromine derivatives of 7-anilino-1- arylisoquinolinequinones. J Chil Chem Soc 2016; 61(4): 3191-3194.
54. Valderrama JA, Delgado V, Sepúlveda S, et al. Synthesis and Cytotoxic Activity on Human Cancer Cells of Novel Isoquinolinequinone-Amino Acid Derivatives. Molecules 2016; 21(9): 1199-1213.
55. Vandekerckhove S, Desmet T, Tran HG, et al. Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg Med Chem Lett 2014; 24(4): 1214-1217.
56. Wube A, Hüfner A, Seebacher W, et al. 1,2-Substituted 4-(1H)-Quinolones: Synthesis, Antimalarial and Antitrypanosomal Activities in Vitro. Molecules 2014; 19(9): 14204-14220.
57. Montoia A, Rocha E Silva LF, Torres ZE et al. Antiplasmodial activity of synthetic ellipticine deriva-tives and an isolated analog. Bioorg Med Chem Lett 2014; 24(12): 2631-2634.
58. Onyeibor O, Croft SL, Dodson HI, et al. Synthesis of Some Cryptolepine Analogues, Assessment of Their Antimalarial and Cytotoxic Activities, and Consideration of Their Antimalarial Mode of Action. J Med Chem 2005; 48(7): 2701-2709.
59. Jonckers TH, van Miert S, Cimanga K, et al. Synthesis, cytotoxicity, and antiplasmodial and antitryp-anosomal activity of new neocryptolepine derivatives. J Med Chem 2002; 45(16): 3497-3508.
60. Zughaier S, Karna P, Stephens D, Aneja R. Potent Anti-Inflammatory Activity of Novel Microtubule-Modulating Brominated Noscapine Analogs. PLoS One 2010; 5(2): e9165.
61. Do T-H, Vo P-N, Tran T-D. Synthesis and Comparison of Anti-inflammatory Activity of Chrysin Derivatives. 13th international electronic conference on synthetic organic chemistry (ECSOC-13) 2009; 1-30.
62. Ahmad TB, Rudd D, Smith J, et al. Anti-Inflammatory Activity and Structure-Activity Relationships of Brominated Indoles from a Marine Mollusc. Mar Drugs 2017; 15(5): 133-152.
63. Hajrezaie M, Golbabapour S, Hassandarvish P, et al. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Copper (II) Complex against Ethanol-Induced Acute Gastric Lesions in Rats. PLoS One 2012; 7(12): e51537.
64. Golbabapour S, Suleiman Gwaram N, Hassandarvish P, et al. Gastroprotection Studies of Schiff Base Zinc (II) Derivative Complex against Acute Superficial Hemorrhagic Mucosal Lesions in Rats. PLoS One 2013; 8(9): e75036.
Published
2018-10-04