HIGH MYOPIA AND GLAUCOMA - A CHALLENGE IN DIAGNOSIS. REVIEW

  • Raluca Eugenia IORGA “Professor Dr. N. Oblu” Clinical Emergency Hospital Iasi
  • D. COSTIN “Professor Dr. N. Oblu” Clinical Emergency Hospital Iasi

Abstract

The increasing global prevalence of myopia has significant consequences, as it predisposes to severe ocular pathologies. Differentiating early-stage glaucoma from myopia is challenging due to common clinical features. Diagnosing glaucoma in a highly myopic patient who has an abnormal optic nerve and an abnormal visual field, but normal intraocular pressure is a problem. Although the mechanisms responsible for glaucoma in myopic patients are poorly understood, it has been suggested that the optic nerve head in myopic eyes is more susceptible to glaucomatous damage. Mechanical stress induced by increased axial length of the globe and oxidative stress play a key role in the development of glaucoma in myopic eyes. Optic coherence tomography assessment of macular ganglion cells layers rather than retinal nerve fiber layer is valuable. Visual field testing should be used routinely in myopic patients, in order to facilitate the detection of early glaucoma. This review summarizes the difficulties in diagnosis of glaucoma in high myopic patients.

Author Biographies

Raluca Eugenia IORGA, “Professor Dr. N. Oblu” Clinical Emergency Hospital Iasi

Department of Ophthalmology

D. COSTIN, “Professor Dr. N. Oblu” Clinical Emergency Hospital Iasi

Department of Ophthalmology
“Grigore. T. Popa” University of Medicine and Pharmacy Iasi
Faculty of Dental Medicine
Department of Surgery

References

1. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, et al. Global data on visual im-pairment in the year 2002. Bull WHO 2004: 82(11): 844-851.
2. Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open angle glaucoma: a systematic review and meta-analysis. Ophtalmol 2011; 118(10): 1989-1994.
3. Sia DI, Edussuriya K, Sennanayake S, Senaratne T, Selva D, Casson RJ. Prevalence of and risk factors for primary open angle glaucoma in central Sri Lanka: the Kandy eye study. Ophthalmic Epidemiol 2010; 17(4): 211-216.
4. McMonnies CW. Intraocular pressure spikes in keratectasia, axial myopia, and glaucoma. Optom Vis Sci 2008; 85(10): 1018-1026.
5. Blumen Ohana E, Blumen MB, Bluwol E, Derri M, Chabolle F, Nordmann JP. Primary open angle glaucoma and snoring: prevalence of OSAS. Eur Ann Otorhinolaryngol Head Neck Dis 2010; 127(5): 159-164.
6. Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr Opin Oph-thalmol 2013; 24(2): 96-101.
7. Young T. The Association Between Myopia and Glaucoma. Topics in Glauc 2016; 12: 5-7.
8. Foster PJ, Jiang Y. Epidemiology of myopia. Eye 2014; 28: 202-208.
9. Ma F, Dai J, Sun X. Progress in understanding the association between high myopia and primary open-angle glaucoma. Clin Exp Ophthalmol 2014; 42(2): 190-197.
10. Hayashi W, Shimada N, Hayashi K, Moriyama M, Yoshida T, Tokoro T, Ohno-Matsui K. Retinal vessels and high myopia. Ophthalmol 2011; 118(4): 791-793.
11. Charman N. Myopia: its prevalence, origins and control. Ophthalmic Physiol Opl 2011; 31(1): 3-6.
12. He M, Zheng Y, Xiang F. Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci 2009; 86(1): 40-44.
13. Lam CS, Lam CH, Cheng SC, Chan LY. Prevalence of myopia among Hong Kong Chinese school children: changes over two decades. Ophthalmic Physiol Opl 2012; 32(1): 17-24.
14. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: The Blue Mountains Eye Study. Ophthalmol 1999; 106(10): 2010-2015.
15. Sommer A, Tielsch JM. Risk factors for open angle glaucoma: the Barbados Eye Study. Arch Oph-thalmol 1996; 114(2): 235-238.
16. Wong TY, Klein BE, Klein R, Knudtson M, Lee KE. Refractive errors, intraocular pressure, and glaucoma in a white population. Ophthalmol 2003; 110(1): 211-217.
17. 17. Perera SA, Wong TY, Tay WT, Foster PJ, Saw SM, Aung T. Refractive error, axial dimensions, and primary open angle glaucoma: the Singapore Malay Eye Study. Arch Ophthalmol 2010; 128(7): 900-905.
18. Hsu CH, Chen RI, Lin SC. Myopia and glaucoma: sorting out the difference. Curr Opin Ophthalmol 2015; 26(2): 90-95.
19. Francisco B-M, Salvador M, Amparo N. Oxidative stress in myopia. Oxidative Med Cell Longevity 2015; article ID 750637.
20. Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularized and avas-cular retinas and in animal models of retinal disease. Prog Retin Eye Res 2001; 20(2): 175-208.
21. Bron AM, Creuzot-Garcher C, Goudeau-Boutillon S, d’Athis P. Falsely elevated intraocular pressure due to increased central corneal thickness. Graefes Arch Clin Exp Ophthalmol 1999; 237(3): 220-224.
22. Jonas JB, Martus P, Budde WM. Anisometropia and degree of optic nerve damage in chronic open angle glaucoma. Am J Ophthalmol 2002; 134(4): 547-551.
23. Jonas JB, Gusek GC, Naumann GO. Optic disc morphometry in chronic primary open-angle
glaucoma: I. morphometric intrapapillary characteristics. Graefes Arch Clin Exp Ophthalmol
1988; 226(6): 522-530.
24. Jonas JB, Dichtl A. Optic disc morphology in myopic primary open-angle glaucoma. GraefesA rch Clin Exp Ophthalmol 1997; 235(10): 627-633.
25. Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol 1988; 226(6): 587-590.
26. Wang TH, Lin SY, Shih YF, et al. Evaluation of optic disc changes in severe myopia. J Formos Med Assoc 2000; 99: 559-563.
27. Lee YA, Shih YF, Lin LK, Huang JY, Wang TH. Association Between High Myopia and
Progression of Visual Field Loss in Primary Open-angle Glaucoma. J Formos Med Assoc 2008; 107(12): 952-957.
28. Ding X, Chang RT, et al. Visual field defect classification in the Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Registry Study. Br J Ophthalmol 2016; 100(12): 1697-1702.
29. Vesti E, Johnson CA, Chauhan BC. Comparison of different methods for detecting glaucomatous visual field progression. Invest Ophthalmol Vis Sci 2003; 44: 3873-3879.
30. Sample et al. Using Unsupervised Learning with Bayesian Mixture of Factor Analysis Patterns of Glaucomatous Visual Field Defects. Invest Ophthalmol Vis Sci 2004; 45: 2596-2605.
31. Zhang Y, Wen W, Sun X. Comparison of several parameters in two optical coherence tomography systems for detecting glaucomatous defects in high myopia. Invest Ophthalmol Vis Sci 2016; 57(11): 4910-4915.
32. Shoji T, Nagaoka Y, Sato H, Chihara E. Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma. Graefs Arch Exp Ophthalmol 2012; 250(12): 1843-1849.
33. Han JC, Cho SH, Sohn DY, Kee C. The characteristics of lamina cribrosa defects in myopic eyes with and without openangle glaucoma. Invest Ophthalmol Vis Sci 2016; 57(2): 486-494.
34. Miki A, Ikuno Y, Asai T, et al. Defects of the lamina cribrosa in high myopia and glaucoma. PLoS 2015; 10(9): e0137909.
35. Lee KM, Lee EJ, Kim TW. Lamina cribrosa configuration in tilted optic discs with different tilt axes: a new hypothesis regarding optic disc tilt and torsion. Invest Ophthalmol Vis Sci 2015; 56(5): 2958-2967.
36. Kimura Y, Akagi T, Hangai M, et al. Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia. PLoS One 2014; 9(12): e115313.
37. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res 2012; 31(6): 622-660.
Published
2018-12-27